

Troi Dialog Plug-in 3.6
USER GUIDE
May 2005

Troi Automatisering
Vuurlaan 18
2408 NB Alphen a/d Rijn
The Netherlands
Tel: +31-172-426606
Fax: +31-172-470539

You can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi Dialog Plug-in is copyright 1998-2005 of Troi Automatisering. All rights reserved.

http://www.troi.com/

Table of Contents

Installing plug-ins.. 1
If You Have Problems.. 1
What can this plug-in do?.. 2
Getting started 2

Using external functions... 2
Where to add the External Functions?.. 2
Simple example.. 3

Summary of functions... 4
Using the ProgressBar function 5

Phase 1: Showing the progress bar.. 5
Phase 2: Updating the progress bar... 5
Phase 3: Removing the progress bar... 6
Example script with progress bar.. 6

Function Reference .. 7
TrDl-BigInputDialog 7
TrDl-DelayTicks 9
TrDl-DialogEx 10
TrDl-DoDialog 11
TrDl-DoFlashDialog 13
TrDl-DoListDialog 14
TrDl-GetButton 16
TrDl-GetInput 17
TrDl-GetPopup 19
TrDl-IconControl 20
TrDl-InputDialog 21
TrDl-ProgressBar 23
TrDl-SetDialogTitle 24
TrDl-SetInput 25
TrDl-SetLabels 26
TrDl-SetListInput 27
TrDl-SetPopup 28
TrDl-SetPosition 30
TrDl-SetPreference 31
TrDl-Version 32
Troi-Set Default Separator 34
Troi-Set Separator Once 35

i

Installing plug-ins

 For MacOS:
n Quit FileMaker Pro.
n Put the file “Troi Dialog Plug-in” from the folder “Mac OS Plug-in” into the

“FileMaker Extensions” folder in the FileMaker Pro folder.

n If you have installed previous versions of this plug-in, you are asked: “An older
item named “Troi Dialog Plug-in” already exists in this location. Do you want to
replace it with the one you’re moving?’. Press the OK button.

n Start FileMaker Pro. The first time the Troi Dialog Plug-in is used it will display a
dialog box, indicating that it is loading and showing the registration status.

For Windows:
n Quit FileMaker Pro.
n Put the file "trdialog.fmx" from the directory "Windows Plug-in" into the "SYSTEM" subdirectory in

the FileMaker Pro directory.
n If you have installed previous versions of this plug-in, you are asked: “This

folder already contains a file called 'trdialog.fmx'. Would you like to replace
the existing file with this one?’. Press the Yes button.

n Start FileMaker Pro. The Troi Dialog Plug-in will display a dialog box,
indicating that it is loading and showing the registration status.

TIP You can check which plug-ins you have loaded by going to the plug-in preferences: Choose Preferences
from the Edit menu, and then choose Plug-ins.

FMP7 With FileMaker 7 the plug-ins folder is named "Extensions", on Windows ànd on Mac.

You can now open the file "All Dialog Examples.fp5" to see how to use the plug-in's functions. There is also a
Function overview available.

If You Have Problems

This user guide tries to give you all the information necessary to use this plug-in. So if you have a problem
please read this user guide first. Also you might visit our support web page:

 <http://www.troi.com/support/>
This page contains FAQ's (Frequently Asked Questions), help on registration and much more. If that doesn't
help you can get free support by email. Send your questions to support@troi.com with a full explanation of
the problem. Also give as much relevant information (version of the plug-in, which platform, version of the
operating system, version of FileMaker Pro) as possible.

If you find any mistake in this manual or have a suggestion please let us know. We appreciate your feedback!

TIP You can get more information on returned error codes from our OSErrrs database on our web site:
<http://www.troi.com/software/oserrrs.html>. This free FileMaker database lists all error codes for Windows
and Mac OS!

1

http://www.troi.com/support/
http://www.troi.com/software/oserrrs.html

What can this plug-in do?
The Troi Dialog Plug-in is a very powerful tool for adding dynamic dialog functions to FileMaker Pro.
With it you can show several types of dialogs from a FileMaker Script, where the dialog text and the but-tons
are generated dynamically. All from within FileMaker you can:

• show dialogs
• show input dialogs
• show password dialogs
• show flash dialogs
• show list dialogs
• show big input dialogs.

Getting started

Using external functions

The Troi Dialog Plug-in adds new functions to the standard functions that are available in FileMaker Pro. The
functions added by a plug-in are called external functions. You can see those extra functions for all

plug-ins at the top right of the Specify Calculation Box:

You use special syntax with external functions: External("function name",parameter) where function name is
the name of an external function. The parameter is required, even if it's only "". Plug-ins don't work directly
after installation. To access a plug-in function, you need to add the calls to the function in a calculation for
example in a text calculation in Define Fields or in a ScriptMaker Script.

IMPORTANT In the United States, commas act as list separators in functions. In other countries semicolons
might be used as list separators. The separator being used depends on the operating system your computer uses,
as well as the separator used when the file was created. All examples show the functions with commas. For
example: External("TrDl-Version", "") will become External("TrDl-Version"; "") in
such a file.

Where to add the External Functions?

External functions for this plug-in are intended to be used in a script step using a calculation. For most
functions of this plug-in it makes no sense to add them to a define field calculation, as the functions will have
side effects.

2

Select External functions
to see all the plug-ins

Plug-in Names

External Functions
shown here

An External
function

Simple example

Say you have a database Persons.fp5, with a text field called NameTotal. You want to display a dialog
where you display this name from the current record. In ScriptMaker create a script "Display current
name". Add the following script step to this script:

Set Field[myResultField, External("TrDl-DoDialog",
 "The current person has this name: ¶¶" & NameTotal & "|OK")]

This will show you a dialog with the text and an OK button, similar to this:

IMPORTANT Function names, like TrDl-DoDialog are case sensitive. Be sure to spell them right, or get
them from the External Functions list at the top right of the "Specify Calculation" dialog. Also make sure you
don't use a capital i instead of a lowercase l in the prefix TrDl.

NOTE Make sure the prefix is spelled TrDl. The last letter is a lowercase l as in London. Not a number 1
(one) nor an uppercase i as in Italy.

Please take a close look at the included example files, as they provide a great starting point. From there you can
move on, using the functions of the plug-in as building blocks. Together they give you all the tools you
need to show the user clear and specific dialogs.

3

Summary of functions

The Troi Dialog Plug-in adds the following functions:

function name short description
TrDl-BigInputDialog Displays an input dialog box, in which the user can enter a long text.
TrDl-DelayTicks Waits a specified period of time.
TrDl-DialogEx Displays a dialog box, this function has extra possibilities.
TrDl-DoDialog Displays a dialog box (similar to the "Show Message" script step).
TrDl-DoFlashDialog Displays a flash dialog box for a specified period of time.
TrDl-DoListDialog Displays a list dialog box, from which the user can choose an item.
TrDl-GetButton Returns the number of the button clicked in the last dialog shown.
TrDl-GetInput Returns the contents of one of the input fields.
TrDl-GetPopup Returns the current popup list stored in the plug-in.
TrDl-IconControl Sets the custom icon.
TrDl-InputDialog Shows an input dialog, with up to 9 input, password,popup or checkbox

fields.
TrDl-ProgressBar Displays a progress bar dialog box.
TrDl-SetDialogTitle Sets the default Dialog Title for the title bar of dialogs.
TrDl-SetInput Sets the text to be pre-entered in the input fields of the next input dialog.
TrDl-SetLabels Sets the label text to be displayed next to the input fields of the next input

dialog.
TrDl-SetListInput Preselect a item from the items in a list dialog.
TrDl-SetPopup Sets the values to be used for the popup list.
TrDl-SetPosition Sets the position on the screen of dialogs to be shown.
TrDl-SetPreference Sets preferences.
TrDl-Version Use this function to see which version of the plug-in is loaded. This

function is also used to register the plug-in.

Troi-DoDialog (obsolete name, for compatibility only) Displays a dialog box
Troi-Set Default Separator Changes the default separator text to the given separator.
Troi-Set Separator Once Changes the separator to the given separator, for one function.

4

Using the ProgressBar function

The Troi Dialog Plug-in adds the TrDl-ProgressBar function, which manages the display of a progress bar
dialog box. With this function you can indicate to a user that a script is doing a lengthy operation, and pro-vide
feedback on how long this operation will last. Below you see an example progress bar:

The TrDl-ProgressBar function should be implemented in 3 phases:

1- Showing the progress bar: make the progress bar visible.
2- Updating the progress bar: increases the progress bar (multiple times, usually in a loop).
3- Removing the progress bar: the progress bar dialog is removed.

Phase 1: Showing the progress bar

The purpose of this phase is to tell the plug-in to start showing the progress bar and to specify the maxi-mum
value the progress bar should go to and to give an initial text. Here is the syntax for this phase:

Set Field [result, External("TrDl-ProgressBar", "show|maxval|textToshow")]

The parameter maxval should be the result of a calculation of the number of steps. This can be for exam-ple
based on the number of found records on which the the script is working. Use the
Status(CurrentFoundCount) function for this.
An example ScriptMaker Script step can be:

Set Field [result, External("TrDl-ProgressBar", "show|" &
Status(CurrentFoundCount)& "|" & "Starting...")]

NOTE If you specify a zero as maxval, an indefinite progress bar is shown (barber pole).

Phase 2: Updating the progress bar

This phase usually occurs in a loop. When FileMaker has performed a number of actions, like for example
processed 10 records, you need to give feedback to the user by updating the display of the progress bar, .
Here is the syntax for this:

5

Set Field [result, External("TrDl-ProgressBar",
"incr|increase value|newtext")]

The parameter increase value should be the result of a calculation of the number of steps that have
been handled. You can also give an optional new text to be shown.

So an example ScriptMaker Script step can be:

Set Field [result, External("TrDl-ProgressBar",
"incr|10|Still working...")]

Phase 3: Removing the progress bar

If you no longer want to show the progress bar dialog you need to remove the progress bar. This step usual-ly
occurs just after the end of the loop. This phase has only "stop" as parameter:

Set Field [result, External("TrDl-ProgressBar", "stop")]

Example script with progress bar

We assume that in your FileMaker file the following fields are defined:
gNumberOfSteps Global, number
gResult Global, text

Below you see an example ScriptMaker script which combines the 3 phases:

Comment [Calculate the number of steps.]
Set Field [gNumberOfSteps, Status(CurrentFoundCount)]
Comment [Make the progress bar visible with the initial text]
Comment [the 2nd parameter indicates the total number of steps:]
Set Field [gResult, External("TrDl-ProgressBar" ,

"show|" & gNumberOfSteps &
"|Showing a simple progress bar...¶¶Please wait.")]

Go to Record[First]
L o o p
Comment [Increase the progress bar by 1]
Set Field [gResult, External("TrDl-ProgressBar" , "incr|1")]
...
You should do your time consuming stuff here!
...
Go to Record[Next, Exit after last]

End Loop
Comment [Remove the progress bar.]
Set Field [gResult, External("TrDl-ProgressBar" , "stop")]

6

Function Reference
TrDl-BigInputDialog

Syntax External("TrDl-BigInputDialog", "switches|prompt|button1|button2|button3|button4|initialText")

Displays an input dialog box, in which the user can enter a long text (up to the FileMaker limit of 64000 characters).

Parameters
switches this determines the behaviour of the dialog and which information is returned.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)
initialText the initial text
If you specify an empty button text, no button will be displayed.

Switches can be empty or you can add one or both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number
-SelectAllText select the initial text when the dialog is first shown
-MaxChars=x maximum number of characters allowed. If more characters are typed the dialog beeps
-MinChars=y the minimum number of characters before buttons that require text will be enabled

You can also add one of these switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4
This indicates which button will be selected when the user presses the ENTER key on the Numeric Keypad.

You can also add one or more of these switches:
-Button1NeedsText -Button2NeedsText -Button3NeedsText -Button4NeedsText
If you add this switch the button is disabled until there is (enough) text.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

-Width=x makes the width of the dialog the x pixels wide
-Height=y makes the width of the dialog the y pixels high

You can also add this switch:
-StopOnESC
If you add this switch the user can press the ESC key to leave the dialog. The dialog returns with button 0.

Returned result

The number of the button that was clicked followed by the text typed. By adding switches this function can also return the
text of the button.

The plug-in can also return an error code:
$$-92 ddpLenErr, when the minimum number of characters allowed is bigger than the maximum

number of characters.
$$-108 memFullErr, ran out of memory

 $$-207 notEnoughBufferSpace, the result is too big.

Other error codes may be returned.

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.

If you type the RETURN key (on Windows labelled as ENTER) on the main keyboard, a return character is entered in the
text. You can exit this dialog with the ENTER key on the numeric keypad (normally at the right of the keyboard). The
default button will be returned.

You can set the maximum numbers of characters the a user can type in with the "-MaxChars" switch. For example
"-MaxChars=100 will beep when the maximum number of characters is reached. If you don't set this limit the maximum
will be 64000 characters.
The -SelectAllText switch will make that the initial text is selected when the dialog is first shown.

Example usage

Set Field [result, External("TrDl-BigInputDialog",
"-noteIcon -stopOnESC |Please type in your text: |OK|Cancel|Help|Stop|" &
"your story here!¶this on a new line...")]

This will show an input dialog, with a large text area to type in. The icon is a note icon. The text area has the text "your
story here!" and "this on a new line..." already filled in.

Example 2

This is an example for a (simple) dictionary. We assume that in your FileMaker file the following text fields are defined:
keywordText and definitionText. Finally a global text field gResult. keywordText should contain keywords and
definitionText should contain definitions for that keyword. To make an editing dialog for this dictionary add in ScriptMaker
the following script steps:

Set Field [gResult, External("TrDl-SetDialogTitle", "Your titletext")]
Set Field [gResult, External("TrDl-BigInputDialog", "-NoteIcon -Button1NeedsText -DefaultButton1 -dialogName=My
Dictionary.|Please improve this definition of " & """"& keywordText & """" & ":|OK|Cancel|||" & definitionText)]
Set Field [definitionText, External("TrDl-GetInput", "-text1")]

This will show a text for a definition taken from the field definitionText. The keyword will be shown between quotes, by
putting 2 quotes in a text string. In the calculation this looks like this: """"

7

TrDl-BigInputDialog

Syntax External("TrDl-BigInputDialog", "switches|prompt|button1|button2|button3|button4|initialText")

Displays an input dialog box, in which the user can enter a long text (up to the FileMaker limit of 64000 characters).

Parameters
switches this determines the behaviour of the dialog and which information is returned.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)
initialText the initial text
If you specify an empty button text, no button will be displayed.

Switches can be empty or you can add one or both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number
-SelectAllText select the initial text when the dialog is first shown
-MaxChars=x maximum number of characters allowed. If more characters are typed the dialog beeps
-MinChars=y the minimum number of characters before buttons that require text will be enabled

You can also add one of these switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4
This indicates which button will be selected when the user presses the ENTER key on the Numeric Keypad.

You can also add one or more of these switches:
-Button1NeedsText -Button2NeedsText -Button3NeedsText -Button4NeedsText
If you add this switch the button is disabled until there is (enough) text.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

-Width=x makes the width of the dialog the x pixels wide
-Height=y makes the width of the dialog the y pixels high

You can also add this switch:
-StopOnESC
If you add this switch the user can press the ESC key to leave the dialog. The dialog returns with button 0.

Returned result

The number of the button that was clicked followed by the text typed. By adding switches this function can also return the
text of the button.

The plug-in can also return an error code:
$$-92 ddpLenErr, when the minimum number of characters allowed is bigger than the maximum

number of characters.
$$-108 memFullErr, ran out of memory

 $$-207 notEnoughBufferSpace, the result is too big.

Other error codes may be returned.

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.

If you type the RETURN key (on Windows labelled as ENTER) on the main keyboard, a return character is entered in the
text. You can exit this dialog with the ENTER key on the numeric keypad (normally at the right of the keyboard). The
default button will be returned.

You can set the maximum numbers of characters the a user can type in with the "-MaxChars" switch. For example
"-MaxChars=100 will beep when the maximum number of characters is reached. If you don't set this limit the maximum
will be 64000 characters.
The -SelectAllText switch will make that the initial text is selected when the dialog is first shown.

Example usage

Set Field [result, External("TrDl-BigInputDialog",
"-noteIcon -stopOnESC |Please type in your text: |OK|Cancel|Help|Stop|" &
"your story here!¶this on a new line...")]

This will show an input dialog, with a large text area to type in. The icon is a note icon. The text area has the text "your
story here!" and "this on a new line..." already filled in.

Example 2

This is an example for a (simple) dictionary. We assume that in your FileMaker file the following text fields are defined:
keywordText and definitionText. Finally a global text field gResult. keywordText should contain keywords and
definitionText should contain definitions for that keyword. To make an editing dialog for this dictionary add in ScriptMaker
the following script steps:

Set Field [gResult, External("TrDl-SetDialogTitle", "Your titletext")]
Set Field [gResult, External("TrDl-BigInputDialog", "-NoteIcon -Button1NeedsText -DefaultButton1 -dialogName=My
Dictionary.|Please improve this definition of " & """"& keywordText & """" & ":|OK|Cancel|||" & definitionText)]
Set Field [definitionText, External("TrDl-GetInput", "-text1")]

This will show a text for a definition taken from the field definitionText. The keyword will be shown between quotes, by
putting 2 quotes in a text string. In the calculation this looks like this: """"

8

TrDl-DelayTicks

Syntax Set Field [result, External("TrDl-DelayTicks", "ticks")]

Waits a specified period of time.

Parameters
ticks The time the function waits, in 1/60th of a second

Returned result

This function always returns 0.

Special considerations

A maximum time of 2 minutes can be specified.

On Mac OS X there is a problem where FileMaker does not update the screen after a TrDl-DelayTicks step, even if you do a
different Set Field step. To workaround this please add this step before the TrDl-DelayTicks step: Pause/Resume
Script[0:00:00]

Example usage

Set Field[gButtonNr, External("Troi-DelayTicks", "180")] will wait for 180 ticks = 3 seconds.

9

TrDl-DialogEx

Syntax External("TrDl-DialogEx", "switches|prompt|button1|button2|button3|button4")

Displays a dialog box, from which the user can choose a button.

Parameters
switches this determines the behaviour of the dialog and which information is returned
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)
If you specify an empty button text, no button will be displayed at that place.

Switches can be empty or one of these:
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function

Returned result

The number of the button that was clicked.

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.
See also the functions "TrDl-GetInput" and TrDl-GetButton for easy parsing of the result.

Example usage

External("TrDl-DialogEx", "-NoteIcon |Hi, ¶¶Hello world!|OK|Cancel")

This shows a dialog with a note icon. If the user chooses the OK button "1" will be returned.If the user chooses the Cancel
button "2" will be returned.

Example 2

We assume that in your FileMaker file the following fields are defined:
 Name Text
 result Global, text

The Name field contain names of persons. In ScriptMaker add the following script steps:

Set Field [result, External("TrDl-DialogEx", "-CustomIcon |Hi, ¶The name is""" & Name & """.")]

This shows a dialog with a custom icon and a OK button. The text of the field name is added, so you get something like:
Hi,
The name is "Peter Baanen".

Note the use of two times a double quote to add the double quote to the calculation. The custom icon needs to be set in an
earlier script step with the TrDl-IconControl function.

10

TrDl-DoDialog

Syntax Set Field [result, External("TrDl-DoDialog", "prompt|button1|button2|button3|button4|switches")]

Displays a dialog box (similar to the "Show Message" script step). The dialog is built from calculations and fields.

Parameters
 prompt the text of the dialog
 button1 the text of the 1st button (from the right)
 button2 the text of the 2nd button (from the right)
 button3 the text of the 3rd button (from the right)
 button4 the text of the 4th button (from the right)
 switches (optional) see below
 userlabel (only for userpassword) text of the label of the username input field
 passwordlabel (only for userpassword) text of the label of the password input field

If you specify an empty button text, no button will be displayed. Switches can be set to:
input to display an input dialog box
password to display a password input dialog box
userpassword to get a dialog box which asks for a username and password

You can also add this extra switch for the userpassword dialog:
-StartField1 start with the cursor in the first input field
-StartField2 start with the cursor in the second input field

Returned result

The number of the button that was pushed, and the text input if applicable.

Special considerations

See also "TrDl-DialogEx", which has more possibilities.

IMPORTANT Use only in a script. Do not use this function in a calculated field definition, because when FileMaker
calculates the fields this will result into a repeated dialog for EACH record. Not funny if you have 100,000 records. Also do
not use the separator in the text or buttons itself. See also "Troi-Set Default Separator" and "Troi-Set Separator Once" if
you want to use a different separator.

See "TrDl-SetDialogTitle" if you want to change the title of the dialog. See also the functions "TrDl-GetInput" and
TrDl-GetButton for easy parsing of the result.

Example usage

Set Field[gButtonNr,
External(TrDl-DoDialog, "Do you want to save the text?|OK|Cancel||Don't Save")]

This will show a dialog box with 3 buttons.

Example 2

We assume that in your FileMaker file the following fields are defined:
 gDialogText Global, text
 gOKButtonLabel Global, text

 gCancelButtonLabel Global, text
 result Global, text

The gDialogText field contains the text you want to display, and can be filled for example with a calculation.
gOKButtonLabel and gCancelButtonLabel should be filled with "OK" and "Cancel" for use in the English language, and
with translations in other languages. In ScriptMaker add the following script step:

Set Field [result, External("TrDl-DoDialog", gDialogText & "|" &
gOKButtonLabel "|" &
gCancelButtonLabel)]

This shows a dialog with the text and an OK and Cancel button in the appropriate language.

Example 3

This example will show an UserPassword dialog. We assume that in your FileMaker file the following fields is defined:
 result Global, text

In ScriptMaker add the following script step:

Set Field [result, External("TrDl-DoDialog",
"¶Please enter user name and password:|OK |Cancel|||Userpassword -StartField1 |" &
Status(CurrentUserName) & "|User Name: |Password: ")]

This shows a dialog with two input fields: one for user name the other for the password. The switch "-StartField1" will
select the first field, so the user can edit the user name right away. If the user is usually the same, add a switch
"-StartField2" instead, so that user only has to give the password.

11

TrDl-DoDialog

Syntax Set Field [result, External("TrDl-DoDialog", "prompt|button1|button2|button3|button4|switches")]

Displays a dialog box (similar to the "Show Message" script step). The dialog is built from calculations and fields.

Parameters
 prompt the text of the dialog
 button1 the text of the 1st button (from the right)
 button2 the text of the 2nd button (from the right)
 button3 the text of the 3rd button (from the right)
 button4 the text of the 4th button (from the right)
 switches (optional) see below
 userlabel (only for userpassword) text of the label of the username input field
 passwordlabel (only for userpassword) text of the label of the password input field

If you specify an empty button text, no button will be displayed. Switches can be set to:
input to display an input dialog box
password to display a password input dialog box
userpassword to get a dialog box which asks for a username and password

You can also add this extra switch for the userpassword dialog:
-StartField1 start with the cursor in the first input field
-StartField2 start with the cursor in the second input field

Returned result

The number of the button that was pushed, and the text input if applicable.

Special considerations

See also "TrDl-DialogEx", which has more possibilities.

IMPORTANT Use only in a script. Do not use this function in a calculated field definition, because when FileMaker
calculates the fields this will result into a repeated dialog for EACH record. Not funny if you have 100,000 records. Also do
not use the separator in the text or buttons itself. See also "Troi-Set Default Separator" and "Troi-Set Separator Once" if
you want to use a different separator.

See "TrDl-SetDialogTitle" if you want to change the title of the dialog. See also the functions "TrDl-GetInput" and
TrDl-GetButton for easy parsing of the result.

Example usage

Set Field[gButtonNr,
External(TrDl-DoDialog, "Do you want to save the text?|OK|Cancel||Don't Save")]

This will show a dialog box with 3 buttons.

Example 2

We assume that in your FileMaker file the following fields are defined:
 gDialogText Global, text
 gOKButtonLabel Global, text

 gCancelButtonLabel Global, text
 result Global, text

The gDialogText field contains the text you want to display, and can be filled for example with a calculation.
gOKButtonLabel and gCancelButtonLabel should be filled with "OK" and "Cancel" for use in the English language, and
with translations in other languages. In ScriptMaker add the following script step:

Set Field [result, External("TrDl-DoDialog", gDialogText & "|" &
gOKButtonLabel "|" &
gCancelButtonLabel)]

This shows a dialog with the text and an OK and Cancel button in the appropriate language.

Example 3

This example will show an UserPassword dialog. We assume that in your FileMaker file the following fields is defined:
 result Global, text

In ScriptMaker add the following script step:

Set Field [result, External("TrDl-DoDialog",
"¶Please enter user name and password:|OK |Cancel|||Userpassword -StartField1 |" &
Status(CurrentUserName) & "|User Name: |Password: ")]

This shows a dialog with two input fields: one for user name the other for the password. The switch "-StartField1" will
select the first field, so the user can edit the user name right away. If the user is usually the same, add a switch
"-StartField2" instead, so that user only has to give the password.

12

TrDl-DoFlashDialog

Syntax Set Field [result, External("TrDl-DoFlashDialog", "ticks|text|switches")]

Displays a flash dialog box for a specified period of time.

Parameters
ticks The time this dialog must be visible, in 1/60th of a second.
text Specifies the text you want to display
switches (optional) this changes the behaviour of the dialog

Switches can be empty or one of these:
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function

Returned result

This function always returns 0.

Special considerations

You can hold flash dialogs on the screen longer, or get rid of them early. This is what is possible:

- To dismiss a flash dialog: click on the dialog or press the ENTER or SPACE key.
- To keep a flash dialog longer on the screen: click on the dialog and hold the mousebutton down. Or keep the ENTER or
SPACE key down. When you release the mousebutton or key the dialog goes away.

IMPORTANT: Use only in a script. Do not use this function in a calculated field definition, because when FileMaker
calculates the fields, this will result into a repeated dialog for EACH record. Not funny if you have 100,000 records. Also
do not use the separator in the text or buttons itself. See also "Troi-Set Default Separator" and "Troi-Set Separator Once" if
you want to use a different separator.

Example usage

 Set Field[gButtonNr, External(TrDl-DoFlashDialog, "120|Have a nice day")]

This will show a flash dialog box for 120 ticks = 2 seconds.

Example 2

We assume that in your FileMaker file the following fields are defined:
 gDialogText Global, text
 gTicksPrefs Global, text
 result Global, text

The gDialogText field contains the text you want to display, and can be filled for example with a calculation. gTicksPrefs
should be filled with a time in 1/60th of a second. You can then use this as a preference. In ScriptMaker add the following
script step:

Set Field [result, External("TrDl-DoFlashDialog", gTicksPrefs & "|" & gDialogText & "|" & "-NoteIcon")]

This shows a flash dialog with the text and a note icon.

13

TrDl-DoListDialog

Syntax External("TrDl-DoListDialog", "switches|prompt|button1|button2|button3|button4|listitems")

Displays a list dialog box, from which the user can choose an item.

Parameters
switches this determines the behaviour of the dialog and which information is returned.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)
listitems the list of items (separated by a "|" char) from which the user can choose from

If you specify an empty button text, no button will be displayed.

Switches can be empty or you can add one or both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number
-ReturnListText return the *text* of the listitem selected, instead of the index in the list.

You can also add one of these switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4

This indicates which button will be selected when the user presses the ENTER key.

You can also add one or more of these switches:
-Button1NeedsSelection -Button2NeedsSelection -Button3NeedsSelection -Button4NeedsSelection

If you add this switch the button is disabled until the user selects an item.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

-Width=x makes the width of the dialog the x pixels wide
-Height=y makes the width of the dialog the y pixels high

You can also add this switch:
-StopOnESC

If you add this switch the the user can press the ESC key to leave the dialog. The dialog returns as button
number 0.

Returned result

The number of the button that was clicked followed by the index in the list of the item that was selected. By adding
switches this function can also return the text of the button and/or the item selected.

The plug-in can also return an error code:
$$-92 = ddpLenErr , when the amount of list data is over 32768 characters

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.

You can now type the first letter of the item you want to select.

DoListDialog now (starting with version 3.1.2) returns an error $$-92 = ddpLenErr, when the amount of list data is over
32768 characters (this is the limit of the Mac OS List Manager). Please make sure your data is limited to 32767 characters
or less.

Example usage

Set Field [result, External("TrDl-DoListDialog", "-noteIcon |Please select a fruit: |OK|Cancel|Help|Stop|" &
"Apple|Pear|Lemon")]

This will show a list of 3 items to chose from, with a note icon. If the user chooses the first item and pressed the OK
button "1|1" will be returned.

Example 2

We assume that in your FileMaker file the following fields are defined:
 gFlavors Global, text
 result Global, text

gFlavors should contain a list of items to choose from with each items separated by a "|". In ScriptMaker add the following
script steps:

Set Field [result, External("TrDl-DoListDialog", "-returnListText -Button1NeedsSelection |Please select a fruit:
|OK|Cancel|||" & gFlavors)]

This will show the list items to chose from. The dialog uses a custom icon. This icon needs to be set before with the
TrDl-IconControl function. The OK button can be pressed after the user selected an item.

14

TrDl-DoListDialog

Syntax External("TrDl-DoListDialog", "switches|prompt|button1|button2|button3|button4|listitems")

Displays a list dialog box, from which the user can choose an item.

Parameters
switches this determines the behaviour of the dialog and which information is returned.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)
listitems the list of items (separated by a "|" char) from which the user can choose from

If you specify an empty button text, no button will be displayed.

Switches can be empty or you can add one or both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number
-ReturnListText return the *text* of the listitem selected, instead of the index in the list.

You can also add one of these switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4

This indicates which button will be selected when the user presses the ENTER key.

You can also add one or more of these switches:
-Button1NeedsSelection -Button2NeedsSelection -Button3NeedsSelection -Button4NeedsSelection

If you add this switch the button is disabled until the user selects an item.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

-Width=x makes the width of the dialog the x pixels wide
-Height=y makes the width of the dialog the y pixels high

You can also add this switch:
-StopOnESC

If you add this switch the the user can press the ESC key to leave the dialog. The dialog returns as button
number 0.

Returned result

The number of the button that was clicked followed by the index in the list of the item that was selected. By adding
switches this function can also return the text of the button and/or the item selected.

The plug-in can also return an error code:
$$-92 = ddpLenErr , when the amount of list data is over 32768 characters

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.

You can now type the first letter of the item you want to select.

DoListDialog now (starting with version 3.1.2) returns an error $$-92 = ddpLenErr, when the amount of list data is over
32768 characters (this is the limit of the Mac OS List Manager). Please make sure your data is limited to 32767 characters
or less.

Example usage

Set Field [result, External("TrDl-DoListDialog", "-noteIcon |Please select a fruit: |OK|Cancel|Help|Stop|" &
"Apple|Pear|Lemon")]

This will show a list of 3 items to chose from, with a note icon. If the user chooses the first item and pressed the OK
button "1|1" will be returned.

Example 2

We assume that in your FileMaker file the following fields are defined:
 gFlavors Global, text
 result Global, text

gFlavors should contain a list of items to choose from with each items separated by a "|". In ScriptMaker add the following
script steps:

Set Field [result, External("TrDl-DoListDialog", "-returnListText -Button1NeedsSelection |Please select a fruit:
|OK|Cancel|||" & gFlavors)]

This will show the list items to chose from. The dialog uses a custom icon. This icon needs to be set before with the
TrDl-IconControl function. The OK button can be pressed after the user selected an item.

15

TrDl-GetButton

Syntax Set Field [result, External("TrDl-GetButton", "")]

Returns the number of the button clicked in the last dialog shown.

Parameters
none, please leave empty for future use.

Returned result

The number of the button clicked in the last dialog shown.

Special considerations

This function makes it easy to get the button number of a dialog that returns multiple results.

The button number is saved by the plug-in until a next dialog is displayed. Please be aware that each dialog function of the
plug-in resets the number. Dialogs that have no buttons will set the button number to 0. (This is to be able to extend the
functionality of these functions in the future).

When the FileMaker application stops, the saved button number is reset to 0.

See also the function "TrDl-GetInput".

Example usage

Set Field[gUsername,
External(TrDl-GetButton, "")]

This will return the number of the button clicked, for example 3.

Example 2

This example will show a password dialog. We assume that in your FileMaker file the following field is defined:
 result Global, text

In ScriptMaker add the following script steps:

Set Field [result, External("TrDl-InputDialog", "-StopIcon -StartField2 -Bullet2 | 2 |" &
 "Please enter your name and password: |OK|Cancel")]
If [External("TrDl-GetButton", "")=1 and External("TrDl-GetInput", "-text1")= "sesame"]
 ... do your secret stuff here...
End If

16

TrDl-GetInput

Syntax Set Field [result, External("TrDl-GetInput", "switches")]

returns the contents of one of the input fields. This makes it easy to get the result without parsing.

Parameters
switches specify which input data from the last dialog is returned.

Switches can be set to:
-Text1 this will return the text of the first input field (from the top) from the last dialog.
-Text2 this will return the text of the second input field (from the top) from the last dialog.
-Text3 this will return the text of the third input field (from the top) from the last dialog.
...
-Text9 this will return the text of the 9th input field (from the top) from the last dialog.

Returned result

The text of the specified input field, from the last dialog shown.

Special considerations

The text of the input field(s) is saved by the plug-in until a next dialog is displayed. Please be aware that each dialog
function of the plug-in resets the text. Dialogs that have no input field(s) will set the text to "". (This is to be able to
extend the functionality of these functions in the future).

When the FileMaker application stops, the input data is reset to "".

See also the function "TrDl-GetButton".

Example usage

Set Field[gUsername,
External("TrDl-GetInput", "-Text1")]

This will put the data of the first input field of the last dialog shown, for example "John", in the global field gUserName.

Example 2

This example will show an an input dialog with 5 input fields. We use the Get-Input function to easily get the data out.
We assume that in your FileMaker file the following fields are defined:
 Name Text

Address Text
City Text
Zip Text
Country Text

 result Global, text

In ScriptMaker add the following script steps:

Set Field [result, External("TrDl-InputDialog", "-NoteIcon |5|Please enter your personal data: |OK|Cancel")]
If [External("TrDl-GetButton", "")=1]
 Set Field [Name, External("TrDl-GetInput" , "-text1")]
 Set Field [Address, External("TrDl-GetInput" , "-text2")]
 Set Field [City, External("TrDl-GetInput" , "-text3")]
 Set Field [Zip, External("TrDl-GetInput" , "-text4")]
 Set Field [Country, External("TrDl-GetInput" , "-text5")]
End If

Example 3

This example will show an an list dialog with 1 input field. We use the Get-Input function to easily get the data out. We
assume that in your FileMaker file the following fields are defined:
 FlavourChozen Text
 result Global, text

In ScriptMaker add the following script steps:
 Set Field [result, External("TrDl-DoListDialog", "-noteIcon -returnListText |Please select a fruit:" &

"|OK|Cancel|Help|Stop|" & "Apple|Pear|Lemon|Prune")]
 Set Field [FlavourChozen, External("TrDl-GetInput" , "-text1")]

17

TrDl-GetInput

Syntax Set Field [result, External("TrDl-GetInput", "switches")]

returns the contents of one of the input fields. This makes it easy to get the result without parsing.

Parameters
switches specify which input data from the last dialog is returned.

Switches can be set to:
-Text1 this will return the text of the first input field (from the top) from the last dialog.
-Text2 this will return the text of the second input field (from the top) from the last dialog.
-Text3 this will return the text of the third input field (from the top) from the last dialog.
...
-Text9 this will return the text of the 9th input field (from the top) from the last dialog.

Returned result

The text of the specified input field, from the last dialog shown.

Special considerations

The text of the input field(s) is saved by the plug-in until a next dialog is displayed. Please be aware that each dialog
function of the plug-in resets the text. Dialogs that have no input field(s) will set the text to "". (This is to be able to
extend the functionality of these functions in the future).

When the FileMaker application stops, the input data is reset to "".

See also the function "TrDl-GetButton".

Example usage

Set Field[gUsername,
External("TrDl-GetInput", "-Text1")]

This will put the data of the first input field of the last dialog shown, for example "John", in the global field gUserName.

Example 2

This example will show an an input dialog with 5 input fields. We use the Get-Input function to easily get the data out.
We assume that in your FileMaker file the following fields are defined:
 Name Text

Address Text
City Text
Zip Text
Country Text

 result Global, text

In ScriptMaker add the following script steps:

Set Field [result, External("TrDl-InputDialog", "-NoteIcon |5|Please enter your personal data: |OK|Cancel")]
If [External("TrDl-GetButton", "")=1]
 Set Field [Name, External("TrDl-GetInput" , "-text1")]
 Set Field [Address, External("TrDl-GetInput" , "-text2")]
 Set Field [City, External("TrDl-GetInput" , "-text3")]
 Set Field [Zip, External("TrDl-GetInput" , "-text4")]
 Set Field [Country, External("TrDl-GetInput" , "-text5")]
End If

Example 3

This example will show an an list dialog with 1 input field. We use the Get-Input function to easily get the data out. We
assume that in your FileMaker file the following fields are defined:
 FlavourChozen Text
 result Global, text

In ScriptMaker add the following script steps:
 Set Field [result, External("TrDl-DoListDialog", "-noteIcon -returnListText |Please select a fruit:" &

"|OK|Cancel|Help|Stop|" & "Apple|Pear|Lemon|Prune")]
 Set Field [FlavourChozen, External("TrDl-GetInput" , "-text1")]

18

TrDl-GetPopup

Syntax Set Field [result, External("TrDl-GetPopup", "switches")]

Returns the popup list that is currently stored in the plug-in.

Parameters
switches specifies which popuplist is returned

Switches must be one of these switches:
-Popup1 get popup list 1
-Popup2 get popup list 2
-Popup3 get popup list 3
-Popup4 get popup list 4
... ...
-Popup8 get popup list 8
-Popup9 get popup list 9

Returned result

The list of popup values separated by returns.

Special considerations

If there is no popup list the result is an empty text.

Example usage

Set Field[gResult, External("TrDl-GetPopup" , "-Popup1")]

This will return the popup list 1 as currently set in the plug-in. For example it may return:
 Patrick
 Jonathan
 Brent
 -
 Guest

19

TrDl-IconControl

Syntax External("TrDl-IconControl", "-setCustomIcon")

Sets the custom icon, to be used in subsequent dialogs where the switch "-customIcon" is specified.

Parameters
switch set to "-SetCustomIcon" Other switches may be added in future versions.

Returned result

If successful it returns 0.
If unsuccessful it returns an error code starting with $$ and the error code. Possible codes are:
$$-50 = parameter error, the clipboard was not saved first.
$$-41 = not enough memory.

Other errors may be returned. (See OSErrrs for more information on error codes.)

Special considerations

You can specify an image of any size. However as the dialogs show the icons at 32x32 pixels it is best to use that size.
You can use a custom icon with the and the functions: DialogEx, DoListDialog and InputDialog.

Example usage

We assume that in your FileMaker file the following fields are defined:
 gCustomIcon Global, container
 gErrorCode Global, text

gCustomIcon should contain an icon. In ScriptMaker add the following script steps:
Copy [Select, "gCustomIcon"]
Set Field [gErrorCode, External("TrDl-IconControl", "-setCustomIcon")]
If [Left(gErrorCode , 2) = "$$"]
 Beep
 Show Message [An error occurred.]
End If

This will set the custom icon to the contents of the container field "gCustomIcon".

20

TrDl-InputDialog

Syntax External("TrDl-InputDialog", "switches|nr. of fields|prompt|button1|button2|button3|button4")

Displays an input dialog box, which the user can fill the input fields. Each of the up to 9 input fields can be a normal text
input field, a password field, a popup menu or a checkbox.

Parameters
switches this determines the behaviour of the dialog and which information is returned.
nr. of fields the number of inputfields to be shown. This can be 1 to 9.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)

If you specify an empty button text, no button will be displayed. Switches can be empty or you can add one or
both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number

To indicates which button will be selected when the user presses the ENTER key you can add one of these
switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4

For each field you can also add one of these field format switches:
-Bullet1 -Bullet2 -Bullet3 -Bullet4 ... -Bullet9
-Popup1 -Popup2 -Popup3 -Popup4 ... -Popup9
-Checkbox1 -Checkbox2 -Checkbox3 -Checkbox4 ...-Checkbox9
This indicates for a field if it is a bullet field, a popup field or a checkbox field. If you don't specify a field
format switch the field will be a normal input field.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

You can also add this switch:
-StopOnESC

If you add this switch the the user can press the ESC key to leave the dialog. The dialog returns as button
number 0.

You can also add one of this switch:
-StartField1...-StartField9 specifies the input field where the cursor will be in at the start of the dialog

Returned result

The number of the button that was clicked followed by the text of the input fields. By adding switches this function can
also return the text of the button.

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.
See "TrDl-SetPosition" if you want to change the position of the dialog.
See "TrDl-SetInput" to set the text to be preentered into the input fields.
See "TrDl-SetLabels" to set the labels to the left of the input fields.
See "TrDl-SetPopup" to set the popup values to be used for popup fields.

Example usage

Set Field [result, External("TrDl-InputDialog", "-NoteIcon |5 |Please enter your personal data: |OK|Cancel|Help|Stop|")]

This will show 5 input fields to fill in, with a note icon. If the user clicked the OK button a possible result can be:
"1|John|Smith|Berkeley|USA".

Example 2

We assume that in your FileMaker file the following fields are defined:
 result Global, text
 gErrorCode Global, text

In ScriptMaker add the following script steps:
 Set Field [gErrorCode, External("TrDl-SetLabels", "-Unused |Name|Password|Remember password")]
 Set Field [gErrorCode, External("TrDl-SetInput", "-Unused |" &Status(CurrentUserName) &"||1")]
 Set Field [result, External("TrDl-InputDialog",
"-StopIcon -Bullet2 -Checkbox3 |3|Please enter your name and password: |OK|Cancel|Help|Stop|")]

This will show the a user/password dialog which has also a checkbox callled "Remember password". The checkbox will be
checked because the input for that field is set to 1.

21

TrDl-InputDialog

Syntax External("TrDl-InputDialog", "switches|nr. of fields|prompt|button1|button2|button3|button4")

Displays an input dialog box, which the user can fill the input fields. Each of the up to 9 input fields can be a normal text
input field, a password field, a popup menu or a checkbox.

Parameters
switches this determines the behaviour of the dialog and which information is returned.
nr. of fields the number of inputfields to be shown. This can be 1 to 9.
prompt the text of the dialog
button1..4 the text of the 1st to the 4th button (from the right to left)

If you specify an empty button text, no button will be displayed. Switches can be empty or you can add one or
both of these switches:
-ReturnButtonText return the *text* of the button, instead of the number

To indicates which button will be selected when the user presses the ENTER key you can add one of these
switches:
-DefaultButton1 -DefaultButton2 -DefaultButton3 -DefaultButton4

For each field you can also add one of these field format switches:
-Bullet1 -Bullet2 -Bullet3 -Bullet4 ... -Bullet9
-Popup1 -Popup2 -Popup3 -Popup4 ... -Popup9
-Checkbox1 -Checkbox2 -Checkbox3 -Checkbox4 ...-Checkbox9
This indicates for a field if it is a bullet field, a popup field or a checkbox field. If you don't specify a field
format switch the field will be a normal input field.

You can also add one of these switches:
-StopIcon shows a stop icon (indicating this something severe which the user needs to address)
-CautionIcon shows a caution icon (indicating this dialog warns the user)
-NoteIcon shows a note icon (indicating this dialog gives the user information)
-CustomIcon shows a custom icon. This icon needs to be set before with the TrDl-IconControl function.

You can also add this switch:
-StopOnESC

If you add this switch the the user can press the ESC key to leave the dialog. The dialog returns as button
number 0.

You can also add one of this switch:
-StartField1...-StartField9 specifies the input field where the cursor will be in at the start of the dialog

Returned result

The number of the button that was clicked followed by the text of the input fields. By adding switches this function can
also return the text of the button.

Special considerations

See "TrDl-SetDialogTitle" if you want to change the title of the dialog.
See "TrDl-SetPosition" if you want to change the position of the dialog.
See "TrDl-SetInput" to set the text to be preentered into the input fields.
See "TrDl-SetLabels" to set the labels to the left of the input fields.
See "TrDl-SetPopup" to set the popup values to be used for popup fields.

Example usage

Set Field [result, External("TrDl-InputDialog", "-NoteIcon |5 |Please enter your personal data: |OK|Cancel|Help|Stop|")]

This will show 5 input fields to fill in, with a note icon. If the user clicked the OK button a possible result can be:
"1|John|Smith|Berkeley|USA".

Example 2

We assume that in your FileMaker file the following fields are defined:
 result Global, text
 gErrorCode Global, text

In ScriptMaker add the following script steps:
 Set Field [gErrorCode, External("TrDl-SetLabels", "-Unused |Name|Password|Remember password")]
 Set Field [gErrorCode, External("TrDl-SetInput", "-Unused |" &Status(CurrentUserName) &"||1")]
 Set Field [result, External("TrDl-InputDialog",
"-StopIcon -Bullet2 -Checkbox3 |3|Please enter your name and password: |OK|Cancel|Help|Stop|")]

This will show the a user/password dialog which has also a checkbox callled "Remember password". The checkbox will be
checked because the input for that field is set to 1.

22

TrDl-ProgressBar

Syntax Set Field [result, External("TrDl-ProgressBar", "command|maxval/incrval|text")]

Displays a progress bar dialog box.

Parameters
command the command to be used
maxval the number of steps that should be used
incrval indicates how much steps the progress bar should increase
text the text to be shown

The first 'command' parameter indicates the commands, which may be: Show, Incr or Stop. They are to be used
as follows:
1- Show command: makes the progress bar dialog box visible.
2- Incr command: increases the progress bar (multiple times, usually in a loop).
3- Stop command: the dialog is removed.

Returned result

This function returns no result.

Special considerations

If you specify a zero as maxval, an indefinite progress bar is shown (barber pole).

In some cases the time to perform lengthy scripts might increase, as FileMaker updates the screen after the ProgressBar
step. A freeze screen step does not always help.

IMPORTANT Use only in a script. Do not use this function in a calculated field definition, because when FileMaker
calculates the fields this will result into a repeated dialog for EACH record. Also do not use the separator in the parameter
itself.

Note that functions that use the clipboard, like pasting in a container field will not work, as they try to paste in the
progressbar window.

With FileMaker Pro 7 has a subtle change in how it handles plug-ins. This results in a delay in showing the contents of
the progress bar. You will first see the dialog window, without any text and progress bar drawn in. After a short delay it
will show the correct contents.
We are looking for ways to improve this. Note that this is a graphic defect only, and should not influence your solution in
other ways.

Example usage

Use this function to indicate to a user that a script is doing a lengthy operation and provide feedback on how long this
operation will last.

For a detailed description see the section "Using the TrDl-ProgressBar function" in the user guide.

23

TrDl-SetDialogTitle

Syntax Set Field [result , External("TrDl-SetDialogTitle", "DialogTitle")]

Sets the default Dialog Title for the title bar of dialogs.

Parameters
dialogTitle the title of the dialog that you want to use for all subsequent dialogs

Returned result

An error code. Currently the plug-in always returns 0

Special considerations

The title will stay the same for all following dialogs until you change it again or restart FileMaker. If you add this function
to your startup script, all dialogs with a title bar will show the title you've given.

NOTE On Mac OS all dialogs except the list dialog have no title bar. This function has no effect for these title bar-less
dialogs.

Example usage

External("TrDl-SetDialogTitle", "Troi's Dialog Demo Solution")

This will set the title of subsequent dialogs to "Troi's Dialog Demo Solution".

Example 2

We assume that in your FileMaker file the following fields are defined:
 gDialogTitle Global, text
 gResult Global, text

In ScriptMaker add the following script step:
 Set Field [gResult , External("TrDl-SetDialogTitle", gDialogTitle)]

This script will use the contents of the global text field to set the dialog title.

24

TrDl-SetInput

Syntax Set Field [result, External("TrDl-SetInput", "switches |text1|text2|text3|text4|...|text9")]

Sets the text to be pre-entered in the input fields of the next input dialog.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
text1...text9 the text that will be pre-entered into the input fields 1 to 9.

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

The text of the input field(s) is saved by the plug-in until a dialog is displayed. Please be aware that each dialog function of
the plug-in resets the text. Dialogs that have no input field(s) will set the text to "". (This is to be able to extend the
functionality of these functions in the future).

When the FileMaker application stops, the input data is reset to "".

For password fields: the text is ignored (as you can't see it anyway).
For popup fields: if the text is present in the list of possible choices the first one is selected.
For checkbox fields: use 1 and 0 to check resp. uncheck a checkbox field.

Example usage

Set Field[gErrorCode,
External(TrDl-SetInput, "-Unused|Apple|London|16|Brown|Square")]

This will set the text to be used as the pre-entered text in the next InputDialog function to the five texts.

Example 2

This example will set the pre-entered text to your user name and the value from a field. We assume that in your FileMaker
file the following field is defined:
 gErrorCode Global, text
 gFieldText Global, text

In ScriptMaker add the following script step:

Set Field [result, External("TrDl-SetInput", "-Unused |" & Status(CurrentUserName) & "|" & gFieldText)]

25

TrDl-SetLabels

Syntax Set Field [result, External("TrDl-SetLabels", "switches |label1|label2|label3|label4|label5")]

Sets the label text to be displayed next to the input fields of the next input dialog.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
label1...label9 the text that will be used as labels for the input fields 1 to 9.

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

The labels of the input fields are saved by the plug-in until they are set again. So you only have to set them once if you
want to use the same labels for multiple dialogs. When the FileMaker application stops, the labels are reset to "".

If you have less than 5 fields for the next dialog box you can only specify the labels you need.

Note that for checkbox fields the label is put to the right of the checkbox.

Example usage

Set Field[gErrorCode, External("TrDl-SetLabels", "-Unused |Name|Address|City|Zip|Country")]

This will set the labels for fields 1 to 5.

Example 2

This example will set the labels from a field, this makes it easy to translate a dialog to a different language. We assume
that in your FileMaker file the following fields are defined:
 gErrorCode Global, text
 gLabel1 ... gLabel6 Globals, text

In ScriptMaker add the following script step:

Set Field [result, External("TrDl-SetLabels", "-Unused |" & gLabel1 & "|" & gLabel2 & "|" & gLabel3 & "|" & gLabel4
& "|" & gLabel5 & "|" & gLabel6 & "|" & gLabel7 & "|" & gLabel8 & "|" & gLabel9)]

26

TrDl-SetListInput

Syntax External("TrDl-SetListInput", "switches|preselectedText")

This function allows you to preselect a item from the list in the TrDl-DoListDialog function.

Parameters
switches not used, reserved for future use. Leave blank or put "-unused"
preselectedText the text of the list dialog to be selected

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

See "TrDl-DoListDialog" for more information on the actual list dialog.

Example usage

Set Field [result, External("TrDl-SetListInput", "-unused |" & "Lemon")]
Set Field [result, External("TrDl-DoListDialog", "-noteIcon |Please select a fruit: |OK|Cancel|Help|Stop|" &
"Apple|Pear|Lemon")]

This will show a list dialog with the Lemon selected when the dialog starts.

27

TrDl-SetPopup

Syntax Set Field [result, External("TrDl-SetPopup", "switches |popupvalue 1¶popupvalue 2¶...popupvalue n")]

Sets the values to be used for the popup list.

Parameters
switches specifies which popuplist is set
popupvalues the list of text strings to be used. Separate each item with a return "¶"

Switches must be one of these switches:
-Popup1 set popup list 1
-Popup2 set popup list 2
-Popup3 set popup list 3
-Popup4 set popup list 4
... ...
-Popup8 set popup list 8
-Popup9 set popup list 9

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

If you put a hyphen "-" on a separate line as a popupitem then the popup show in the input dialog will have a separator
line.

The popupvalues of this popup are saved by the plug-in until you set this popup again. So you only have to set a popup
once if you want to use the same popup list for the same field in multiple dialogs. When the FileMaker application stops,
the popups are reset to "".

You can limit to specifing the popups you will be using, for example popup 3 and popup 5.

Note that the number of separate popupvalues is limited to 2048. Each item can be up to 255 characters. The total number
of characters may not exceed FileMaker 64000 character limit. If no items are given the popup will be disabled (grayed out).

Example usage

Set Field[gErrorCode, External("TrDl-SetPopup", "-Popup2 | " & "Patrick¶Jonathan¶Brent¶-¶Guest")]

This will set the the popup list 2 to:
 Patrick
 Jonathan
 Brent
 -
 Guest

All next input dialogs, which have a popup as field 2, will use this list.

Example 2

This example will show an input with 2 popup lists. The first list is filled from a field. The second is filled from a
valuelist. We assume that in your FileMaker file a value list "PopupValues" is defined and also the following fields:
 gErrorCode Global, text
 gPopupData Global, text
 gInputText1 Global, text
 gInputText2 Global, text
 gResult Global, text

In ScriptMaker add the following script steps:

Set Field [gErrorCode, External("TrDl-SetPopup", "-Popup1 |" & gPopupData)]
Set Field [gErrorCode, External("TrDl-SetPopup", "-Popup2 |" &
 ValueListItems(Status(CurrentFileName), "PopupValues"))]
Set Field [gResult, External("TrDl-SetInput", "-Unused |" & gInputText1 & "|" & gInputText2]

Note that the popups are preselected with the values from gInputText1 and gInputText2, if that text is present in the list of
possible choices.

Example 3

To clear the values from a popup list use a command like this:

Set Field[gErrorCode, External("TrDl-SetPopup", "-Popup2 |")]

This will set the popup list 2 to an empty value.

28

TrDl-SetPopup

Syntax Set Field [result, External("TrDl-SetPopup", "switches |popupvalue 1¶popupvalue 2¶...popupvalue n")]

Sets the values to be used for the popup list.

Parameters
switches specifies which popuplist is set
popupvalues the list of text strings to be used. Separate each item with a return "¶"

Switches must be one of these switches:
-Popup1 set popup list 1
-Popup2 set popup list 2
-Popup3 set popup list 3
-Popup4 set popup list 4
... ...
-Popup8 set popup list 8
-Popup9 set popup list 9

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

If you put a hyphen "-" on a separate line as a popupitem then the popup show in the input dialog will have a separator
line.

The popupvalues of this popup are saved by the plug-in until you set this popup again. So you only have to set a popup
once if you want to use the same popup list for the same field in multiple dialogs. When the FileMaker application stops,
the popups are reset to "".

You can limit to specifing the popups you will be using, for example popup 3 and popup 5.

Note that the number of separate popupvalues is limited to 2048. Each item can be up to 255 characters. The total number
of characters may not exceed FileMaker 64000 character limit. If no items are given the popup will be disabled (grayed out).

Example usage

Set Field[gErrorCode, External("TrDl-SetPopup", "-Popup2 | " & "Patrick¶Jonathan¶Brent¶-¶Guest")]

This will set the the popup list 2 to:
 Patrick
 Jonathan
 Brent
 -
 Guest

All next input dialogs, which have a popup as field 2, will use this list.

Example 2

This example will show an input with 2 popup lists. The first list is filled from a field. The second is filled from a
valuelist. We assume that in your FileMaker file a value list "PopupValues" is defined and also the following fields:
 gErrorCode Global, text
 gPopupData Global, text
 gInputText1 Global, text
 gInputText2 Global, text
 gResult Global, text

In ScriptMaker add the following script steps:

Set Field [gErrorCode, External("TrDl-SetPopup", "-Popup1 |" & gPopupData)]
Set Field [gErrorCode, External("TrDl-SetPopup", "-Popup2 |" &
 ValueListItems(Status(CurrentFileName), "PopupValues"))]
Set Field [gResult, External("TrDl-SetInput", "-Unused |" & gInputText1 & "|" & gInputText2]

Note that the popups are preselected with the values from gInputText1 and gInputText2, if that text is present in the list of
possible choices.

Example 3

To clear the values from a popup list use a command like this:

Set Field[gErrorCode, External("TrDl-SetPopup", "-Popup2 |")]

This will set the popup list 2 to an empty value.

29

TrDl-SetPosition

Syntax Set Field [result, External("TrDl-SetPosition", "switches |left|top")]

Sets the position on the screen of dialogs to be shown.

Parameters
switches specifies the scope of the SetPosition function
left the left co-ordinate (in pixels) of the dialog
top the top co-ordinate (in pixels) of the dialog

Switches can be empty or must be one of these switches:
-All show all subsequent dialogs at the specified position
-Once show only the next dialog at the specified position

If you don't specify a switch the position is set once. If you want to reset the position to the default position
use this switch:
-Default show all subsequent dialogs at the default position

Returned result

An error code. Currently the plug-in always returns 0.

Special considerations

On the Mac the plug-in makes sure the dialog does not display under the menu bar.

Example usage

Set Field[gErrorCode, External("TrDl-SetPosition", "-Once | 100| 150")]

This will set the position of the next dialog box to 100 pixels from the left and 150 pixels from the top of the screen.

Example 2

This example will use fields to set the position fror all next dialogs. We assume that in your FileMaker file the following
fields are defined:
 gErrorCode Global, text
 gLeft Global, text
 gTop Global, text

In ScriptMaker add the following script steps:

Set Field [gErrorCode, External("TrDl-SetPosition", "-All |" & gLeft & "|" & gTop)]

30

TrDl-SetPreference

Syntax Set Field [result, External("TrDl-SetPreference", "switches|value")]

Sets preferences.

Parameters
switches specifies which preference to set
value the value to set it to.

Switches can be only this switch:
-ProgressbarDefunctTicks Set the time the progress bar disappears automatically in 1/60th of a second.

Returned result

If successful it returns 0.
If unsuccessful it returns an error code starting with $$ and the error code. Possible codes are:
$$-50 = parameter error.

Example usage

Set Field[gErrorCode, External("TrDl-SetPreference", "-ProgressbarDefunctTicks |" & 20*60)]

This will change the time of automatic removal of a progressbar dialog to 20 seconds. When you forget to remove the
ProgressBar window the plug-in removes it automatically after 30 seconds.
In some special cases you might want to change this, for example to be able to have a longer debug time.

31

TrDl-Version

Syntax Set Field [result, External("TrDl-Version", "switches")]

Use this function to see which version of the plug-in is loaded. This function is also used to register the plug-in.

Parameters
switches determine the behaviour of the function

switches can be one of this:
-GetVersionString the version string is returned (default)
-GetVersionNumber Returns the version number of the plug-in
-ShowFlashDialog Shows the Flash Dialog of the plug-in (returns 0)

If you leave the parameter empty the version string is returned.

Returned result

The function returns "" if this plug-in is not loaded. If the plug-in is loaded the result depends on the input parameter. It is
either a:

-GetVersionString:
If you asked for the version string it will return for example "Troi Dialog Plug-in 3.0"

-GetVersionNumber:
If you asked for the version number it returns the version number of the plug-in x1000. For example version 2.2 will
return number 2200.

-ShowFlashDialog:
This will show the flash dialog and then return the error code 0.

Special considerations

Important: always use this function to determine if the plug-in is loaded. If the plug-in is not loaded use of external
functions may result in data loss, as FileMaker will return an empty field to any external function that is not loaded.

Example usage

External(TrDl-Version, "") will for example return "Troi Dialog Plug-in 3.0".

Example 2

External("TrDl-Version", "-GetVersionNumber") will return 1100 for version 1.1.
External("TrDl-Version", "-GetVersionNumber") will return 1101 for version 1.1b1
External("TrDl-Version", "-GetVersionNumber") will return 2130 for version 2.1.3

So for example to use a feature introduced with version 1.3 test if the result is equal or greater than 1300.

32

Troi-DoDialog (old name)

Syntax Set Field [result, External("Troi-DoDialog", "prompt|button1|button2|button3|button4|switches")]

Displays a dialog box (similar to the "Show Message" script step).

Parameters

Returned result

Special considerations

•See “TrDl-DoDialog”. This is an old name, and is supplied for compatiblity with version 1.0 of Troi FM Plug-in.•

33

Troi-Set Default Separator

Syntax Set Field [result, External("Troi-Set Default Separator", "separator")]

Changes the default separator text to the given separator. The new separator is used until an other separator is specified.

Parameters
The separator text is used by the plug-in to split one parameter into multiple parts. At FileMaker startup the
separator text defaults to "|". Use this function if you want to specify a parameter part which has the current
separator in it.

Returned result

Special considerations

The separator is shared between all Troi plug-ins.
TIP Always try to specify a separator which you know won't be in any of the parameters.

Example usage

Set Field[gDontCare, External(Troi-Set Default Separator, "<->")]

34

Troi-Set Separator Once

Syntax Set Field [result, External("Troi-Set Separator Once", "separator")]

Changes the default separator text to the given separator, for ONE Troi Plug-in function only. After the function has been
called the separator will revert to the default separator.

Parameters
The separator text is used by the plug-in to split one parameter into multiple parts. At FileMaker startup the
separator text defaults to "|". Use this function if you want to specify a parameter part which has the current
separator in it.

Returned result

Example usage

 Set Field[gDontCare, External(Troi-Set Separator Once, "<->")]

35

	color: [color.blue]
	line: [2]
	style: [border.s]
	FirPagNum: 3
	p1: 1
	p2: 1
	p3: 2
	p4: 2
	p5: 2
	p6: 2
	p7: 3
	p8: 4
	p9: 5
	p10: 5
	1:
	p11: 5
	p12: 6
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	Hidem:
	p13: 6
	p14: 7
	p15: 7
	p16: 9
	p17: 10
	p18: 11
	13:
	17:
	15:
	16:
	18:
	p19: 13
	p21: 16
	p20: 14
	p22: 17
	p28: 25
	p27: 24
	p26: 23
	p25: 21
	p24: 20
	p23: 19
	p29: 26
	p30: 27
	p31: 28
	20:
	19:
	29:
	28:
	27:
	26:
	25:
	24:
	23:
	22:
	21:
	31:
	click: Click on a line to jump to that subject
	30:
	32:
	33:
	34:
	p32: 30
	p33: 31
	p34: 32
	35:
	p35: 34
	14:
	36:
	p36: 35
	x:
	TOC:

